
|

Let’s Try
Something New
With Storage For
Suricata!
Suricon - 2022
Athens, Greece

|

● CTO @ Quadrant Information Security
○ Recently acquired by Worklyn Partners.

● Author of “Sagan”, the log analysis engine (syslog, windows event logs, etc).
● Author of “Meer”, a spooling system for Suricata and Sagan!
● Spoken at multiple Suricons, because Suricon is awesome.

Champ Clark III

|

● Clustering - pool lots a resources to build big machines.
● Lots of knobs - Everything is tunable.
● The “Industry standard” for big data storage.

Opensearch / Elasticsearch (Advantages)

|

● Written in Java.
● More than 32gb heap size may be problematic (garbage collection).
● Lots of “knobs” to twist - This can be overwhelming and do more harm than

good.
● Not ideal for small systems with limited resources and/or memory.
● Fun with licensing arguments (Elastic vs AWS)

Opensearch / Elasticsearch (Disadvantages)

|

● “Zinc is a search engine that does full text indexing. It is a lightweight alternative to
Elasticsearch and runs using a fraction of the resources. It uses bluge as the
underlying indexing library.”

● https://github.com/zinclabs/zinc

● Lead developer is Prabhat Sharma.
● Uses “Bludge” as its underlying index library. (https://github.com/blugelabs/bluge)

What is Zinc?

https://github.com/blugelabs/bluge

|

● Written in Golang.
○ No Java “cruft”.
○ Lighter on resources (CPU and Memory).
○ Fast.

● Insanely easy to setup! Great for rapid development!
● Limited number of “knobs”! (less confusion)
● Has a compatible Elasticsearch single record/bulk API.
● Authentication is built in
● Built in Web UI (written in Vue).
● Single binary installation.
● At startup with no data, Zinc uses about 60 mb of RAM!

Zinc (Advantages)

|

● Search API is NOT compatible with Elasticsearch / Opensearch.
● Current, there is no “clustering” options (in development).
● Zinc is still very new & considered beta.

Zinc (Disadvantages)

|

$ https://github.com/zinclabs/zinc/releases/download/v0.3.4/zinc_0.3.4_Linux_x86_64.tar.gz
$ tar zxf zinc_0.3.4_Linux_x86_64.tar.gz
$ mkdir data
$ ZINC_FIRST_ADMIN_USER=admin ZINC_FIRST_ADMIN_PASSWORD=secret ./zinc

Installing & running Zinc!

|

● “Meer” is a dedicated “spooler” for the Suricata IDS/IPS and Sagan log analysis
engines. This means that as Suricata or Sagan write alerts, Meer can augment and
store data to a target backend (Redis, Opensearch, Elasticserach, etc)”

● https://github.com/quadrantsec/meer

● Lead developer is Champ Clark III

What is Meer?

|

● Meer is light on resources
○ Written in C.
○ Light on resources - CPU efficient / 20-60mb of RAM consumption is

normal.
○ It’s really fast.

● Add data to your Suricata EVE output, like:
○ DNS information for src_ip & dest_ip.
○ GeoIP information for src_ip & dest_ip (Maxmind data).
○ “Fingerprinting data” - see Jeremy Groves Suricon 2019 talk, “Passive

Fingerprinting with Suricata”!
○ OUI/manufacturer data when MAC addresses are found.

● Meer now has multiple inputs:
○ “follow “ an EVE file.
○ Redis PUB/SUB - (STREAMS to come?)
○ Named Pipe

What can Meer do?

|

● Meer can write out to various data sources:
○ File (with augmented data!)
○ Named pipe
○ External program (your choice of language).
○ Redis (SET, CHANNEL, RPUSH, LPUSH).
○ Elasticsearch… Opps… Zinc

What can Meer do?

|

Compiling & Installing Meer

$ git clone mit.edu
$ cd meer
$./autogen.sh
$./configure –enable-elasticsearch –enable-redis –enable-geoip
$ make && sudo make install

|

Write data to a unified EVE file or to Redis.

Suricata Configuration:

|

Meer - input: “file”

|

Meer - input: “redis”

|

Meer output: Elasticsearch

|

All the Suricata Data:

|

Zinc UI: Flow data

|

Zinc UI: TLS data

|

Zinc UI: alert data

|

The problem:

● We need to search Suricata data (flows, http, etc) for a certain IOC
○ A file hash
○ An IP address
○ A JA3/JA3S hash
○ A filename
○ Etc.

|

Search solution #1:
Solution #1: Use your kick butt Elasticsearch/Opensearch cluster search all of your
flow, alert, http, smb, etc data.

Advantages:
● Fast access all to data.

Disadvantages:
● You’ll need a kick butt Elasticsearch or Opensearch backend.
● Building out this kick butt ES/OS can cost $$$$.
● Expense isn’t just disk, CPU and memory, it’s continual maintenance.

It’s not possible for many organizations to do this at scale.

|

|

Search solution #2:
Solution #2: Spool your data to disk (Cold storage)

Advantages:
● Cheap.
● Suricata EVE compress very well.
● Storing a year of EVE data becomes possible.

Disadvantages:
● Slow data retrieval!

Doesn’t work great in an incident response situation.

|

Search solution #3:
Solution #3: Hybrid “on disk” (EVE files) and Elasticsearch/Opensearch.

Advantages:
● Can be more cost effective.
● Searches are fast, as long as you’re searching “recent” data.

Disadvantages:
● Have to deal with Elasticsearch/Opensearch maintenance (but less of it, because of

less data).
● When you have to search outside the ES/OS scope, searches are slow again.

This is what we do and likely what most organizations do.

|

Using Zinc to build pre-defined “Network Data Points” (NDPs) for
large “IOC” searches.

What about a bridge between
these search methods?

|

Building “Network Data Points”
(NDPs) with Suricata data.

Data we’ll always keep:

● src_ip and dest_ip
● flow_id
● timestamp
● src_dns/dest_dns (if DNS is enabled)
● geoip_src / geoip_dest (If GeoIP is enabled)

|

Building “Network Data Points”
(NDPs) with Suricata data.

Further distilling Suricata data:
● “flow” - src_ip, dest_ip and app_proto.
● “fileinfo” - File hash data (md5, sha1, sha256), magic and filename
● “tls” - ja3, ja3s, fingerprint, issuerdn, subject, serial, sni, version, notbefore and notafter
● “dns” - Query data only! rrname and rrtype.
● “http” - Full URL, method, status, length.
● “user-agent” - Built off “http” but considered it’s own IOC class type.
● “ssh” - Client version, server version, dest_port and src_port.
● “smb” - user defined types (SMB2_COMMAND_CREATE, SMB2_COMMAND_WRITE)

○ Optional “all” SMB since it’s used in pivots.
● “ftp” - user defined types (STOR, RETR, USER)

|

We make predictable documented IDs for creation and updating!

We only keep “unique” data
we are interested in.

|

Building “Network Data Points”
(NDPs) with Suricata data.

We make a MD5 hash from the data we care about:

FLOW: MD5(SRC_IP || DEST_IP) # We only hash the IP we care about!
TLS: MD5(JA3 + JA3S)
SMB: MD5(SMB_COMMAND + FILENAME)
HTTP: MD5(FULL_URL)
USER_AGENT: MD5(USER_AGENT)
FTP: MD5(FTP_COMMAND + FTP_COMMAND_DATA)
DNS: MD5(RRNAME)

|

NDP MD5 hashes as a doc_id

We use the NDPNDP MD5 hash as the Zinc “document ID”.
This gives us predictable document IDs.
We can now “update” NDPNDP as we receive them.
We automatically drop repeating data.

|

Suricata Configuration

|

Meer NDP configuration

|

Question:

“Have we seen (IP address,file
hash,etc) in our network in the

last year?”

|

Answer:

“Yes and here is the last
timestamp and flow ID.”

|

Answer:

“No”.

|

● 128 gb spool file.
● Storing “all” data resulted in 500500 gb of Zinc data.
● Storing only potential NDP data was 600600 mb of

data.

Storage results:

|

type:tls

|

type:dns +rrname:*.ru

|

type:dns +rrname:*.ru

|

type:tls +issuerdn:*let’s*

|

type:fileinfo +magic:*executable* +filename:*patch*

|

type:ssh +client_software_version:*libssh*

|

type:http +http_user_agent:*hello*

|

type:smb +filename:*agent*

|

Less data:

For “yes” and “no”
answers.

